CONTENTS

- Models \& Images used to support Addition \& Subtraction
- Progression in Counting
- Progression in Number Bonds
- Progression in Addition Calculations
- Progression in Subtraction Calculations
- Addition \& Subtraction Glossary
- Models \& Images to support Multiplication \& Division
- Progression in Times Tables
- Progression in Multiplication Calculations
- Progression in Division Calculations
- Multiplication \& Division Glossary

Calculation Policy Addition and Subtraction

This section provides an overview of the different models and images that can support the teaching of addition and subtraction concepts. These provide explanations of the benefits of using the models and show the links between different operations.

The next section contains each operation broken down into skills, with a dedicated page per skill showing the different models and images that could be used to teach it effectively.

The progressions show the suggested order through the year groups, although some children may need to work on a previous skill they have not secured before moving onto the age appropriate skill

Part-Whole Model

$$
\begin{array}{ll}
7=4+3 & 7-3=4 \\
7=3+4 & 7-4=3
\end{array}
$$

Benefits

This part-whole model supports children in their understanding of aggregation and partitioning. Due to its shape, it can be referred to as a cherry part-whole model.

When the parts are complete and the whole is empty, children use aggregation to add the parts together to find the total.

When the whole is complete and at least one of the parts is empty, children use partitioning (a form of subtraction) to find the missing part.

Part-whole models can be used to partition a number into two or more parts, or to help children to partition a number into tens and ones or other place value columns.

In KS2, children can apply their understanding of the part-whole model to add and subtract fractions, decimals and percentages.

Bar Model (single)

Concrete

0000000

Combination

Benefits

The single bar model is another type of a part-whole model that can support children in representing calculations to help them unpick the structure.

Cubes and counters can be used in a line as a concrete representation of the bar model.

Discrete bar models are a good starting point with smaller numbers. Each box represents one whole.

The combination bar model can support children to calculate by counting on from the larger number. It is a good stepping stone towards the continuous bar model.

Continuous bar models are useful for a range of values. Each rectangle represents a number. The question mark indicates the value to be found.

In KS2, children can use bar models to represent larger numbers, decimals and fractions.

Bar Model (multiple)

Discrete

$$
7-3=4
$$

Continuous

$$
7-3=4
$$

$2,394-1,014=1,380$

Benefits

The multiple bar model is a good way to compare quantities whilst still unpicking the structure.

Two or more bars can be drawn, with a bracket labelling the whole positioned on the right hand side of the bars. Smaller numbers can be represented with a discrete bar model whilst continuous bar models are more effective for larger numbers.

Multiple bar models can also be used to represent the difference in subtraction. An arrow can be used to model the difference.

When working with smaller numbers, children can use cubes and a discrete model to find the difference. This supports children to see how counting on can help when finding the difference.

Number Shapes

$$
7=4+3 \quad 7=3+4
$$

$7-3=4$

Benefits

Number shapes can be useful to support children to subitise numbers as well as explore aggregation, partitioning and number bonds.

When adding numbers, children can see how the parts come together making a whole. As children use number shapes more often, they can start to subitise the total due to their familiarity with the shape of each number.

When subtracting numbers, children can start with the whole and then place one of the parts on top of the whole to see what part is missing. Again, children will start to be able to subitise the part that is missing due to their familiarity with the shapes.

Children can also work systematically to find number bonds. As they increase one number by 1 , they can see that the other number decreases by 1 to find all the possible number bonds for a number.

Cubes

$7=3+4$

$7-3=4$

$7-3=4$

Benefits

Cubes can be useful to support children with the addition and subtraction of one-digit numbers.

When adding numbers, children can see how the parts come together to make a whole. Children could use two different colours of cubes to represent the numbers before putting them together to create the whole.

When subtracting numbers, children can start with the whole and then remove the number of cubes that they are subtracting in order to find the answer. This model of subtraction is reduction, or take away.

Cubes can also be useful to look at subtraction as difference. Here, both numbers are made and then lined up to find the difference between the numbers.

Cubes are useful when working with smaller numbers but are less efficient with larger numbers as they are difficult to subitise and children may miscount them.

Ten Frames (within 10)

$4+3=7 \quad 4$ is a part.
$3+4=7 \quad 3$ is a part.
$7-3=4 \quad 7$ is the whole.
$7-4=3$

$4+3=7$

$$
7-3=4
$$

Benefits

When adding and subtracting within 10 , the ten frame can support children to understand the different structures of addition and subtraction.

Using the language of parts and wholes represented by objects on the ten frame introduces children to aggregation and partitioning.
Aggregation is a form of addition where parts are combined together to make a whole. Partitioning is a form of subtraction where the whole is split into parts. Using these structures, the ten frame can enable children to find all the number bonds for a number.

Children can also use ten frames to look at augmentation (increasing a number) and take-away (decreasing a number). This can be introduced through a first, then, now structure which shows the change in the number in the 'then' stage. This can be put into a story structure to help children understand the change e.g. First, there were 7 cars. Then, 3 cars left. Now, there are 4 cars.

Ten Frames (within 20)

Benefits

When adding two single digits, children can make each number on separate ten frames before moving part of one number to make 10 on one of the ten frames. This supports children to see how they have partitioned one of the numbers to make 10, and makes links to effective mental methods of addition.

When subtracting a one-digit number from a two-digit number, firstly make the larger number on 2 ten frames. Remove the smaller number, thinking carefully about how you have partitioned the number to make 10, this supports mental methods of subtraction.

When adding three single-digit numbers, children can make each number on 3 separate 10 frames before considering which order to add the numbers in. They may be able to find a number bond to 10 which makes the calculation easier. Once again, the ten frames support the link to effective mental methods of addition as well as the importance of commutativity.

Bead Strings

-00-90000000--000-0000000-

-00-000000000000000000--000-00000000000000000-

Benefits

Different sizes of bead strings can support children at different stages of addition and subtraction.

Bead strings to 10 are very effective at helping children to investigate number bonds up to 10 .
They can help children to systematically find all the number bonds to 10 by moving one bead at a time to see the different numbers they have partitioned the 10 beads into e.g. $2+8=10$, move one bead, $3+7=10$.

Bead strings to 20 work in a similar way but they also group the beads in fives. Children can apply their knowledge of number bonds to 10 and see the links to number bonds to 20 .

Bead strings to 100 are grouped in tens and can support children in number bonds to 100 as well as helping when adding by making ten. Bead strings can show a link to adding to the next 10 on number lines which supports a mental method of addition.

Number Lines (labelled)

$$
5+3=8
$$

Benefits

Labelled number lines support children in their understanding of addition and subtraction as augmentation and reduction.

Children can start by counting on or back in ones, up or down the number line. This skill links directly to the use of the number track.

Progressing further, children can add numbers by jumping to the nearest 10 and then jumping to the total. This links to the making 10 method which can also be supported by ten frames. The smaller number is partitioned to support children to make a number bond to 10 and to then add on the remaining part.

Children can subtract numbers by firstly jumping to the nearest 10. Again, this can be supported by ten frames so children can see how they partition the smaller number into the two separate jumps.

Number Lines (blank)

$$
35+37=72
$$

$$
35+37=72
$$

$$
72-35=37
$$

Benefits

Blank number lines provide children with a structure to add and subtract numbers in smaller parts.

Developing from labelled number lines, children can add by jumping to the nearest 10 and then adding the rest of the number either as a whole or by adding the tens and ones separately.

Children may also count back on a number line to subtract, again by jumping to the nearest 10 and then subtracting the rest of the number.

Blank number lines can also be used effectively to help children subtract by finding the difference between numbers. This can be done by starting with the smaller number and then counting on to the larger number. They then add up the parts they have counted on to find the difference between the numbers.

Straws

Benefits

Straws are an effective way to support children in their understanding of exchange when adding and subtracting 2-digit numbers.

Children can be introduced to the idea of bundling groups of ten when adding smaller numbers and when representing 2-digit numbers. Use elastic bands or other ties to make bundles of ten straws.

When adding numbers, children bundle a group of 10 straws to represent the exchange from 10 ones to 1 ten. They then add the individual straws (ones) and bundles of straws (tens) to find the total.

When subtracting numbers, children unbundle a group of 10 straws to represent the exchange from 1 ten to 10 ones.

Straws provide a good stepping stone to adding and subtracting with Base 10/Dienes.

Base 10/Dienes (addition)

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column addition. It is important that children write out their calculations alongside using or drawing Base 10 so they can see the clear links between the written method and the model.

Children should first add without an exchange before moving on to addition with exchange.. The representation becomes less efficient with larger numbers due to the size of Base 10. In this case, place value counters may be the better model to use.

When adding, always start with the smallest place value column. Here are some questions to support children. How many ones are there altogether?
Can we make an exchange? (Yes or No)
How many do we exchange? (10 ones for 1 ten, show exchanged 10 in tens column by writing 1 in column) How many ones do we have left? (Write in ones column) Repeat for each column.

Base 10/Dienes (subtraction)

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column subtraction. It is important that children write out their calculations alongside using or drawing Base 10 so they can see the clear links between the written method and the model.

Children should first subtract without an exchange before moving on to subtraction with exchange. When building the model, children should just make the minuend using Base 10, they then subtract the subtrahend. Highlight this difference to addition to avoid errors by making both numbers. Children start with the smallest place value column. When there are not enough ones/tens/hundreds to subtract in a column, children need to move to the column to the left and exchange e.g. exchange 1 ten for 10 ones. They can then subtract efficiently.
This model is efficient with up to 4-digit numbers. Place value counters are more efficient with larger numbers and decimals.

Place Value Counters (addition)

Benefits

Using place value counters is an effective way to support children's understanding of column addition. It is important that children write out their calculations alongside using or drawing counters so they can see the clear links between the written method and the model.

Children should first add without an exchange before moving on to addition with exchange. Different place value counters can be used to represent larger numbers or decimals. If you don't have place value counters, use normal counters on a place value grid to enable children to experience the exchange between columns.

When adding money, children can also use coins to support their understanding. It is important that children consider how the coins link to the written calculation especially when adding decimal amounts.

Place Value Counters (Subtraction)

Hundreds	Tens	Ones	
$\varnothing 000 \varnothing$	-000¢		07
		$\varnothing \varnothing \varnothing \varnothing \varnothing$	445

Benefits

Using place value counters is an effective way to support children's understanding of column subtraction. It is important that children write out their calculations alongside using or drawing counters so they can see the clear links between the written method and the model.

Children should first subtract without an exchange before moving on to subtraction with exchange. If you don't have place value counters, use normal counters on a place value grid to enable children to experience the exchange between columns.

When building the model, children should just make the minuend using counters, they then subtract the subtrahend. Children start with the smallest place value column. When there are not enough ones/tens/hundreds to subtract in a column, children need to move to the column to the left and exchange e.g. exchange 1 ten for 10 ones. They can then subtract efficiently.

Progression in Counting

Counting is a fundamental part of maths and should be included in every lesson. Counting should always be modelled both forwards and backwards, and be supported by suitable models \& images. The expected counting in each year group is set out below, but this should be followed flexibly. All year groups may need to revisit prior counting skills and children should be extended when appropriate.

Reception

- Count forwards to 10 and back again.
- Count on from any 1 digit number.
- Count up to 20 and back again, being very clear with the 'teen' pronunciation.
- Count along with the numbers displayed.

Year 1

- Count up to 50 and back again.
- Count up to 100 and back again.
- Count along with the numbers displayed and beginning to count along a scale without the numbers marked.
Year 2
- Count up in steps of 10 forwards and backwards.
- Count in steps of 2 forwards and backwards.
- Count in steps of 5 forwards and backwards.
- Count forwards and backwards beyond 100.
- Count in halves \& wholes.

Year 3

- Continue counting in steps of 2, 5 and 10 and related multiples of $10 \& 100$.
- Count in steps of 25 forwards and backwards.
- Count in multiples of any single digit forwards and backwards.
- Count in multiples of 10 forwards \& backwards.
- Count forwards and backwards beyond 1000.
- Count in halves, quarters and wholes.

Year 4

- Count in multiples of any single digit \& related multiples of 10 (link to multiplication)
- Continue counting in steps of 10, 20, 25 and $50 ; 100,200,250 \& 500$.
- Count forwards and backwards into negative numbers.
- Count in halves and steps of 0.5 (link to counting in $5 \mathrm{~s} / 50 \mathrm{~s}$).
- Count in quarters and steps of 0.25 (link to counting in 25 s).
- Count in tenths and steps of 0.1.

Year 5

- Continue counting multiples of any single digit \& related tenths (e.g. 3 \& 0.3).
- Count in different steps into negative numbers.
- Count in tenths and hundredths, using fractions, decimal and percentages.
- Count in halves \& quarters, using fractions, decimals \& percentages.
- Count in fraction steps, using mixed numbers \& improper fractions.

Year 6

- Continue counting in fraction steps, including improper fractions, mixed numbers and equivalent fractions, decimals \& percentages.
- Count in fifths \& equivalent decimals \& percentages.
- Count in decimals steps with up to three decimal places.

Models \& images to support counting

- Number lines, tracks, washing lines etc (blank and numbered)
- Number squares (blank and numbered)
- Real objects, money, numicon
- Rulers, metre sticks, scales etc.
- Counting stick
- Bead string
- Fraction plates, fraction Smartboard images

Progression in Number Bonds

Quick and accurate recall of number facts support pupil's calculations skills as well as freeing up working memory when problem-solving. As a guide 'know' means they can recall the number fact (without needing to count) within 5 seconds. At each stage, it is expected that pupils can still recall the facts from the prior year groups. Where difficulties in age-appropriate recall are detected, it may be necessary to check and revisit number bonds from prior year groups first.

Reception

- Know some different ways of making numbers up to at least 5.
- Be able to subitise numbers (see without counting) numbers up to 5 .

Year 1

- Know all number bonds to 10.
- Know different ways of making each of the numbers up to 10 (e.g. $6=1+5$, $2+4,3+3)$.

Year 2

- Know number bonds for every number up to 20.

Year 3

- Know pairs of multiples of 10 that make 100.
- Know number bonds for every number up to 20.

Year 4

- Quickly work out number bonds to 100.
- Apply number bonds to 20 to mental calculation with 2-digit numbers. (e.g. $35-7$: use knowledge that $7=5+2$ so $35-5=30$, then take away two more by drawing on number bonds to ten $2+8$, so $30-2=28$)

Year 5

- Know number bonds to 100.
- Know pairs of decimals that total one (to one decimal place).

Year 6

- Apply number bonds to calculations with larger number \& decimals.
- Know pairs of decimals that total 1 (to two decimal places).

Models \& images to support Number Bonds

- Rekenreks
- Tens Frame
- Double-sided counters
- Numicon

Skill	Year	Representations and models	
Add two 2-digit			
numbers	2	Part-whole model Bar model Number lines (blank) Straws	Place value counters

Skill	Year	Representations and models	
Subtract two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Subtract 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead string (20) Number tracks Number lines (labelled) Straws
Subtract 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square
Subtract two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10 Place value counters

Glossary

Addend - A number to be added to another.
Aggregation - combining two or more quantities or measures to find a total.

Augmentation - increasing a quantity or measure by another quantity.

Commutative - numbers can be added in any order.
Complement - in addition, a number and its complement make a total e.g. 300 is the complement to 700 to make 1,000

Difference - the numerical difference between two numbers is found by comparing the quantity in each group.

Exchange - Change a number or expression for another of an equal value.

Minuend - A quantity or number from which another is subtracted.

Partitioning - Splitting a number into its component parts.

Reduction - Subtraction as take away.
Subitise - Instantly recognise the number of objects in a small group without needing to count.

Subtrahend - A number to be subtracted from another.

Sum - The result of an addition.
Total - The aggregate or the sum found by addition.

Calculation Policy Multiplication and Division

This section provides an overview of the different models and images that can support the teaching of multiplication and division concepts. These provide explanations of the benefits of using the models and show the links between different operations.

The next section contains each operation broken down into skills, with a dedicated page per skill showing the different models and images that could be used to teach it effectively.

The progressions show the suggested order through the year groups, although some children may need to work on a previous skill they have not secured before moving onto the age appropriate skill.

Bar Model

$$
\begin{aligned}
& 3 \times 7=21 \\
& 7 \times 3=21
\end{aligned}
$$

Girls

Benefits

Children can use the single bar model to represent multiplication as repeated addition. They could use counters, cubes or dots within the bar model to support calculation before moving on to placing digits into the bar model to represent the multiplication.

Division can be represented by showing the total of the bar model and then dividing the bar model into equal groups.

It is important when solving word problems that the bar model represents the problem.

Sometimes, children may look at scaling problems. In this case, more than one bar model is useful to represent this type of problem, e.g. There are 3 girls in a group.
There are 5 times more boys than girls. How many boys are there?
The multiple bar model provides an opportunity to compare the groups.

Number Shapes

Benefits

$$
\begin{aligned}
& 5 \times 4=20 \\
& 4 \times 5=20
\end{aligned}
$$

$$
18 \div 3=6
$$

Number shapes support children's understanding of multiplication as repeated addition.

Children can build multiplications in a row using the number shapes. When using odd numbers, encourage children to interlock the shapes so there are no gaps in the row. They can then use the tens number shapes along with other necessary shapes over the top of the row to check the total. Using the number shapes in multiplication can support children in discovering patterns of multiplication e.g. odd \times odd $=$ even, odd \times even $=$ odd, even \times even $=$ even.

When dividing, number shapes support children's understanding of division as grouping. Children make the number they are dividing and then place the number shape they are dividing by over the top of the number to find how many groups of the number there are altogether e.g. There are 6 groups of 3 in 18 .

Bead Strings

$-000-000-000-000-000-$

$$
\begin{aligned}
& 5 \times 3=15 \\
& 3 \times 5=15
\end{aligned} \quad 15 \div 3=5
$$

-00000-00000-00000-

$$
\begin{aligned}
& 5 \times 3=15 \\
& 3 \times 5=15
\end{aligned} \quad 15 \div 5=3
$$

-0000-0000-0000-0000-0000-

$$
\begin{array}{ll}
4 \times 5=20 \\
5 \times 4=20
\end{array} \quad 20 \div 4=5
$$

Benefits

Bead strings to 100 can support children in their understanding of multiplication as repeated addition. Children can build the multiplication using the beads. The colour of beads supports children in seeing how many groups of 10 they have, to calculate the total more efficiently.
Encourage children to count in multiples as they build the number e.g. 4, 8, 12, 16, 20.

Children can also use the bead string to count forwards and backwards in multiples, moving the beads as they count.

When dividing, children build the number they are dividing and then group the beads into the number they are dividing by e.g. 20 divided by 4 - Make 20 and then group the beads into groups of four. Count how many groups you have made to find the answer.

Number Tracks

$6 \times 3=18$
$3 \times 6=18$

$18 \div 3=6$

Benefits

Number tracks are useful to support children to count in multiples, forwards and backwards. Moving counters or cubes along the number track can support children to keep track of their counting. Translucent counters help children to see the number they have landed on whilst counting.

When multiplying, children place their counter on O to start and then count on to find the product of the numbers.
When dividing, children place their counter on the number they are dividing and the count back in jumps of the number they are dividing by until they reach 0 .
Children record how many jumps they have made to find the answer to the division.

Number tracks can be useful with smaller multiples but when reaching larger numbers they can become less efficient.

Number Lines (labelled)

$$
4 \times 5=20
$$

$$
5 \times 4=20
$$

$$
20 \div 4=5
$$

Benefits

Labelled number lines are useful to support children to count in multiples, forwards and backwards as well as calculating single-digit multiplications.

When multiplying, children start at 0 and then count on to find the product of the numbers.
When dividing, start at the number they are dividing and the count back in jumps of the number they are dividing by until they reach 0 .
Children record how many jumps they have made to find the answer to the division.

Labelled number lines can be useful with smaller multiples, however they become inefficient as numbers become larger due to the required size of the number line.

Number Lines (blank)

Benefits

Children can use blank number lines to represent scaling as multiplication or division.

Blank number lines with intervals can support children to represent scaling accurately. Children can label intervals with multiples to calculate scaling problems.

Blank number lines without intervals can also be used for children to represent scaling.

Base 10/Dienes (multiplication)

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written representations match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed.

Base 10 also supports the area model of multiplication well. Children use the equipment to build the number in a rectangular shape which they then find the area of by calculating the total value of the pieces This area model can be linked to the grid method or the formal column method of multiplying 2 -digits by 2 -digits.

Base 10/Dienes (division)

Benefits

$68 \div 2=34$
Using Base 10 or Dienes is an effective way to support children's understanding of division.

When numbers become larger, it can be an effective way to move children from representing numbers as ones towards representing them as tens and ones in order to divide. Children can then share the Base 10/ Dienes between different groups e.g. by drawing circles or by rows on a place value grid.

When they are sharing, children start with the larger place value and work from left to right. If there are any left in a column, they exchange e.g. one ten for ten ones. When recording, encourage children to use the partwhole model so they can consider how the number has been partitioned in order to divide. This will support them with mental methods.

Place Value Counters (multiplication)

Benefits

Using place value counters is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed The counters should be used to support the understanding of the written method rather than support the arithmetic.

Place value counters also support the area model of multiplication well. Children can see how to multiply 2digit numbers by 2 -digit numbers.

Place Value Counters (division)

Benefits

Using place value counters is an effective way to support children's understanding of division.

When working with smaller numbers, children can use place value counters to share between groups. They start by sharing the larger place value column and work from left to right. If there are any counters left over once they have been shared, they exchange the counter e.g. exchange one ten for ten ones. This method can be linked to the part-whole model to support children to show their thinking.

Place value counters also support children's understanding of short division by grouping the counters rather than sharing them. Children work from left to right through the place value columns and group the counters in the number they are dividing by. If there are any counters left over after they have been grouped, they exchange the counter e.g. exchange one hundred for ten tens.

Progression in Multiplication Tables

This document sets out the order that times tables should be taught in. While the expected year group each table should be mastered is given, this will not be appropriate to all to children. Children should be taught the tables in the designated order, even if this means going back to prior year groups before working at their chronological age.

NB: Children should be able to quickly recall all facts in a random order at each stage before progressing.	Year Group Expectations
First: - $\times 1$ - $\times 10$	Year 1
Second: - $x 5$ (half the ten times table) - x2 (Link to doubling and having two of something)	Year 2
Then: - x 4 Double the $2 x$ table.	Year 3
- $\times 3$ - $\times 6$ These can be linked: once children know x3, they can double it to learn x6. You can then double again for $x 12$. $X 6$ can also be worked out by counting on from the known $x 5$. - $\times 9$ Teach counting back from $10 x$ \& the 'finger trick'.	Year 3
- $\times 8$ Double the $x 4$ table.	
Finally: - $\quad \mathrm{x} 7$ While there are no easy tips \& tricks for this one, if they know all the other tables then they will be able to work out all of the sevens - just need to learn 7×7.	Year 4
- x 11, x 12 These tables should not need to be explicitly taught as they can be derived by partitioning but practice of how to derive, alongside discussion of patterns and practice of quick recall of 11×11 and 11×12 is desirable.	
Now: - Children should be able to answer quick-fire questions on any times table, mixed up and in any order. - They should be able to apply their knowledge to multiply larger numbers using place value (e.g. if you know 3×6, you can work out $30 \times 6,300 \times 60$ etc.) and partitioning (e.g. $14 \times 7=(10 \times 7)+$ (4×7)).	Years 5 \& 6

NB:
If children know tables up to $10 x$ then they are able to calculate any other from 11 upwards by partitioning. However, when learning tables it is good practice to learn up to $12 x$ to boost children's confidence in quick recall.

How do we teach times tables?

Tables need to be taught and frequently practised not just tested.
Please refer to the next section for the specific representations and teaching strategies recommended for each times table.

General strategies include:

- Counting forwards \& backwards in multiples: start with multiples displayed, then slowly cover more \& more until children can recite without them on display.
- Counting sticks: forwards \& backwards; ensure you say the fact (3×2) as well as the multiple (6) to make the link between the two; link multiplication \& division facts when counting; slowly cover up or miss out more multiples; once children are more confident 'hop' around rather than always counting in order.
- Teach children to count on from known facts (e.g. you know $5 x$, so count on to find $6 x$, $7 x$ etc).
- Teach children to use related facts (e.g. the $4 x$ table is double the $2 x$ table).
- Reciting rhymes \& songs (\& include actions).
- Explore patterns in times tables.
- Link the working out of times table facts to repeated addition, counting and arrays.
- Filling in blank multiplication squares \& grids.
- Commutative law: if you 2×3, then you also know 3×2.

Waldorf Flowers

Children start this activity by drawing the centre of the flower, in which they write a number between 2 and 12 . They then draw 12 petals around the centre, with each petal containing the numbers 1 through 12 . The last step is to draw another set of 12 petals which contain the centre number multiplied by each petal in the inner circle.

Skill	Year	Representations and models	
Recall and use multiplication and division facts for the 3-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 4-times table	3	Hundred square Number shapes Counters	Bead strings Number lines
Recall and use multiplication and division facts for the 8-times table	3	Hundred square Number shapes	Everyday objects
Recall and use multiplication and strings division facts for the 6-times table	4	Everyday objects	

Skill	Year	Representations and models	
Recall and use multiplication and division facts for the 7 -times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 9-times table	4	Hundred square Number shapes	Bead strings
Recall and use multiplication and division facts for the 11-times table	4	Hundred square Base 10	Number lines

Skill: 8 times table														Year: 3
000000000000000														Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the eight times table, using manipulatives to support. Make links to the 4 times table, seeing how each multiple is double the fours. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even
						23	4	5	6	7	8	9	10	
					11	1213	14	15	(16)	17	18	19	20	
					21	2223	(2)	25	26	27	28	29	30	
					31	(32) 33	34	35	36	37	38	39	4.)	
					41	4243	44	45	46	47	(48)	49	50	
					51	525	54	55	(5)	57	58	59	60	
					61	6263	(6)	65	66	67	68	69	70	
						(2) 73	74	75	76	77	78	79	8 8)	
					81	828	84	85	86	87	88	89	90	
8	16	24	32	40	91		94	95	96	97	98	99	100	
48	56	64	72	80										
-00000000-00000000-00000000-														

Year: 4
Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table, using manipulatives to support. Make links to the 3 times table, seeing how each multiple is double the threes. Notice the pattern in the ones within each group of five multiples.
Highlight that all the multiples are even

Skill	Year	Representations and models	
Solve one-step problems with multiplication	$1 / 2$	Bar model Number shapes Counters	Ten frames Bead strings Number lines
Multiply 2-digit by 1- digit numbers	$3 / 4$	Place value counters Base 10	Expanded written method Short written method
Multiply 3-digit by 1- digit numbers	4	Place value counters	Short written method
Base 10			
Multiply 4-digit by 1-	5	Place value counters	Short written method
digit numbers			

Skill	Year	Representations and models	
Solve one-step problems with division (sharing)	$1 / 2$	Bar model Real life objects	Arrays Counters
Solve one-step problems with division (grouping)	$1 / 2$	Real life objects Number shapes Bead strings Ten frames	Number lines
Divide 2-digits by 1- digit (no exchange sharing)	3	Straws Base 10 Bar model	Counters

Skill	Year	Representations and models	
Divide 2-digits by 1- digit (sharing with remainders)	$3 / 4$	Straws Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1- digit (grouping)	$4 / 5$	Place value counters Counters	Place value grid Written short division
Divide 3-digits by 1- digit (sharing with exchange)	4	Base 10	Place value counters
Bivide 3-digits by 1- digit (grouping)	$4 / 5$	Place value counters Counters	Place value grid Written short division

$372 \div 15=24$ r12

$372 \div 15=24 \frac{4}{5}$

Glossary

Array - An ordered collection of counters, cubes or other item in rows and columns.

Commutative - Numbers can be multiplied in any order.

Dividend - In division, the number that is divided.

Divisor - In division, the number by which another is divided.

Exchange - Change a number or expression for another of an equal value.

Factor - A number that multiplies with another to make a product.

Multiplicand - In multiplication, a number to be multiplied by another.

Partitioning - Splitting a number into its component parts.

Product - The result of multiplying one number by another.

Quotient - The result of a division

Remainder - The amount left over after a division when the divisor is not a factor of the dividend.

Scaling - Enlarging or reducing a number by a given amount, called the scale factor

